

Sitronix

ST7032

Dot Matrix LCD Controller/Driver

Features

- 5 x 8 dot matrix possible
- Low power operation support:
 -- 2.7 to 5.5V
 - Range of LCD driver power -- 2.7 to 7.0V
- 4-bit, 8-bit, serial MPU or 400kbits/s fast I²C-bus interface are available
- 80 x 8-bit display RAM (80 characters max.)
- 10,240-bit character generator ROM for a total of 256 character fonts(max)
- 64 x 8-bit character generator RAM(max)
- 16-common x 80-segment and 1-common x 80-segment ICON liquid crystal display driver
- 16 x 5 -bit ICON RAM(max)

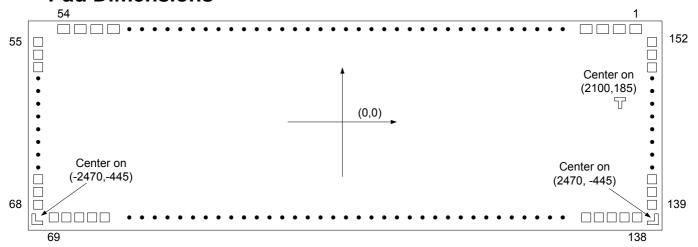
- Wide range of instruction functions:
 Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift, double height font
- Automatic reset circuit that initializes the controller/driver after power on and external reset pin
- Internal oscillator(Frequency=540KHz) and external clock
- Built-in voltage booster and follower circuit (low power consumption)
- Com/Seg direction selectable
- Multi-selectable for CGRAM/CGROM size
- Instruction compatible to ST7066U and KS0066U and HD44780
- Available in COG type

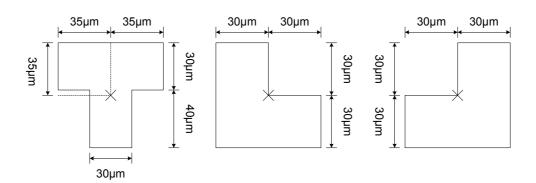
■ Description

The ST7032 dot-matrix liquid crystal display controller and driver LSI displays alphanumeric, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4-/ 8-bit, serial or fast I²C interface microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

The ST7032 character generator ROM is extended to generate 256 5x8dot character fonts for a total of 256

different character fonts. The low power supply (2.7V to 5.5V) of the ST7032 is suitable for any portable battery-driven product requiring low power dissipation.


The ST7032 LCD driver consists of 17 common signal drivers and 80 segment signal drivers. The maximum display RAM size can be either 80 characters in 1-line display or 40 characters in 2-line display. A single ST7032 can display up to one 16-character line or two 16-character lines. No extra drivers can be cascaded


Product Name	Character generator ROM Size	OPR1	OPR2	Support Character
ST7032-0D	256	1	1	English/Japan/European

ST7032	6800-4bit / 8bit interface (without IIC interface)	S
ST7032i	IIC interface	BUS

	ST7032 Serial Specification Revision History						
Version	Date	Description					
1.0	2003/3/24	1. Change "Version 0.1y-Preliminary" to "Version 1.0" 2. Modify Bias resistor value 3. Modify OSC frequency table 4. Adding Serial interface flow chart & example code 5. Adding "E" connection state for serial interface					
1.1	2003/8/27	1. Include ST7032i					

■ Pad Dimensions

Chip Size: 5130.0 x 1080.0μm

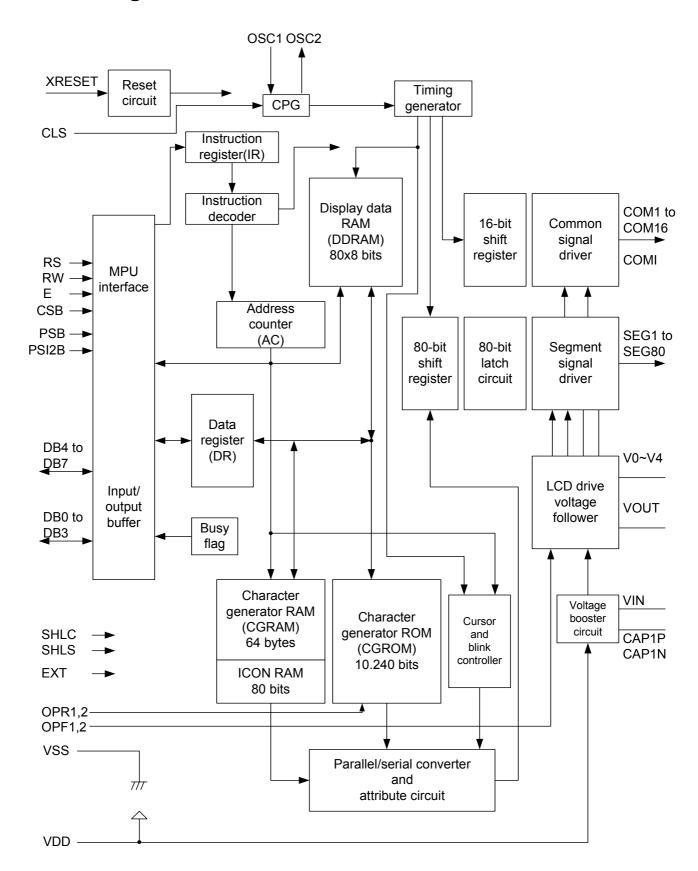
➤ Bump Pitch : 62µm(min)

Bump Height : 17µm(Typ)

Bump Size :

Pad No.1~54 : 54 x 97µm
 Pad No.55~152 : 40 x 97µm

■ Pad Location Coordinates


Pad No.	Function	Х	Υ
1	XRESET	2165.5	420.5
2	OSC1	2089.5	420.5
3	OSC2	2013.5	420.5
4	RS	1937.5	420.5
5	CSB	1861.5	420.5
6	RW	1785.5	420.5
7	Е	1709.5	420.5
8	DB0	1633.5	420.5
9	DB1	1557.5	420.5
10	DB2	1481.5	420.5
11	DB3	1405.5	420.5
12	DB4	1329.5	420.5
13	DB5	1253.5	420.5
14	DB6	1177.5	420.5
15	DB7	1101.5	420.5
16	VSS	1025.5	420.5
17	VSS	949.5	420.5
18	VSS	873.5	420.5
19	OPF1	797.5	420.5
20	OPF2	721.5	420.5
21	OPR1	645.5	420.5
22	OPR2	569.5	420.5
23	SHLC	493.5	420.5
24	SHLS	417.5	420.5
25	VDD	341.5	420.5
26	VDD	265.5	420.5
27	VDD	189.5	420.5
28	VIN	113.5	420.5
29	VIN	37.5	420.5
30	TEST1	-38.5	420.5
31	TEST2	-114.5	420.5
32	VSS	-190.5	420.5
33	NC	-266.5	420.5
34	VOUT	-342.5	420.5
35	VOUT	-418.5	420.5
36	PSB	-494.5	420.5
37	VSS	-570.5	420.5
38	PSI2B	-646.5	420.5
39	CAP1P	-722.5	420.5
40	CAP1P	-798.5	420.5

D. IN.	F	V	V
Pad No.	Function	Х	Υ
41	EXT	-874.5	420.5
42	VSS	-950.5	420.5
43	CLS	-1026.5	420.5
44	CAP1N	-1102.5	420.5
45	CAP1N	-1178.5	420.5
46	VOUT	-1254.5	420.5
47	VOUT	-1330.5	420.5
48	V0	-1406.5	420.5
49	V0	-1482.5	420.5
50	V1	-1558.5	420.5
51	V2	-1634.5	420.5
52	V3	-1710.5	420.5
53	V4	-1786.5	420.5
54	NC	-1862.5	420.5
55	COM[8]	-2445.5	423
56	COM[7]	-2445.5	361
57	COM[6]	-2445.5	299
58	COM[5]	-2445.5	237
59	COM[4]	-2445.5	175
60	COM[3]	-2445.5	113
61	COM[2]	-2445.5	51
62	COM[1]	-2445.5	-11
63	COMI1	-2445.5	-73
64	SEG[1]	-2445.5	-135
65	SEG[2]	-2445.5	-197
66	SEG[3]	-2445.5	-259
67	SEG[4]	-2445.5	-321
68	SEG[5]	-2445.5	-383
69	SEG[6]	-2130.5	-420.5
70	SEG[7]	-2068.5	-420.5
71	SEG[8]	-2006.5	-420.5
72	SEG[9]	-1944.5	-420.5
73	SEG[10]	-1882.5	-420.5
74	SEG[11]	-1820.5	-420.5
75	SEG[12]	-1758.5	-420.5
76	SEG[13]	-1696.5	-420.5
77	SEG[14]	-1634.5	-420.5
78	SEG[15]	-1572.5	-420.5
79	SEG[16]	-1510.5	-420.5
80	SEG[17]	-1448.5	-420.5

Pad No.	Function	X	Υ
81	SEG[18]	-1386.5	-420.5
82	SEG[19]	-1324.5	-420.5
83	SEG[20]	-1262.5	-420.5
84	SEG[21]	-1200.5	-420.5
85	SEG[22]	-1138.5	-420.5
86	SEG[23]	-1076.5	-420.5
87	SEG[24]	-1014.5	-420.5
88	SEG[25]	-952.5	-420.5
89	SEG[26]	-890.5	-420.5
90	SEG[27]	-828.5	-420.5
91	SEG[28]	-766.5	-420.5
92	SEG[29]	-704.5	-420.5
93	SEG[30]	-642.5	-420.5
94	SEG[31]	-580.5	-420.5
95	SEG[32]	-518.5	-420.5
96	SEG[33]	-456.5	-420.5
97	SEG[34]	-394.5	-420.5
98	SEG[35]	-332.5	-420.5
99	SEG[36]	-270.5	-420.5
100	SEG[37]	-208.5	-420.5
101	SEG[38]	-146.5	-420.5
102	SEG[39]	-84.5	-420.5
103	SEG[40]	-22.5	-420.5
104	SEG[41]	39.5	-420.5
105	SEG[42]	101.5	-420.5
106	SEG[43]	163.5	-420.5
107	SEG[44]	225.5	-420.5
108	SEG[45]	287.5	-420.5
109	SEG[46]	349.5	-420.5
110	SEG[47]	411.5	-420.5
111	SEG[48]	473.5	-420.5
112	SEG[49]	535.5	-420.5
113	SEG[50]	597.5	-420.5
114	SEG[51]	659.5	-420.5
115	SEG[52]	721.5	-420.5
116	SEG[53]	783.5	-420.5
117	SEG[54]	845.5	-420.5
118	SEG[55]	907.5	-420.5
119	SEG[56]	969.5	-420.5
120	SEG[57]	1031.5	-420.5

Pad No.	Function	Х	Υ
121	SEG[58]	1093.5	-420.5
122	SEG[59]	1155.5	-420.5
123	SEG[60]	1217.5	-420.5
124	SEG[61]	1279.5	-420.5
125	SEG[62]	1341.5	-420.5
126	SEG[63]	1403.5	-420.5
127	SEG[64]	1465.5	-420.5
128	SEG[65]	1527.5	-420.5
129	SEG[66]	1589.5	-420.5
130	SEG[67]	1651.5	-420.5
131	SEG[68]	1713.5	-420.5
132	SEG[69]	1775.5	-420.5
133	SEG[70]	1837.5	-420.5
134	SEG[71]	1899.5	-420.5
135	SEG[72]	1961.5	-420.5
136	SEG[73]	2023.5	-420.5
137	SEG[74]	2085.5	-420.5
138	SEG[75]	2147.5	-420.5
139	SEG[76]	2445.5	-383
140	SEG[77]	2445.5	-321
141	SEG[78]	2445.5	-259
142	SEG[79]	2445.5	-197
143	SEG[80]	2445.5	-135
144	COM[9]	2445.5	-73
145	COM[10]	2445.5	-11
146	COM[11]	2445.5	51
147	COM[12]	2445.5	113
148	COM[13]	2445.5	175
149	COM[14]	2445.5	237
150	COM[15]	2445.5	299
151	COM[16]	2445.5	361
152	COMI2	2445.5	423
	·	·	

■ Block Diagram

■ Pin Function

Name	Number	I/O	Interfaced with			Function	
					eset pin. (Only if the power on	reset used, the
XRESET	1	L	MPU	XRESET pin must be fixed to VDD.			
, <u></u>			5	Low active	-		
				Select reg	gisters.		
50	_	١.	MDU	0: Instruct	tion regist	er (for write)	
RS	1	I	MPU	Busy fl	ag & addr	ess counter (for read	d)
				1: Data re	gister (for	write and read)	
					ad or write	(In parallel mode).	
R/W	1	I	MPU	0: Write			
				1: Read			
Е	1	L	MPU			te. (<u>"E" must connec</u>	t to "VDD" when
	•	<u> </u>	5		rface is se	<u> </u>	
						lel mode and serial in	•
CSB	1	I	MPU			SB in falling edge sta register and the cloc	-
						lirectional data bus p	
				_		e between the MPU a	
						s a busy flag. In seri	
						a), DB6 is SCL (seri	
DB4 to DB7	4	I/O	MPU		• •	,	,
				In I ² C interface DB7 (SDA) is input data and DB6 (SCL) is clock input.			
				SDA and SCL must connect to I ² C bus (I ² C bus is to connect			
						SDA/SCL and the p	
				Four low	order bi-di	rectional data bus pi	ns. Used for data
DB0 to DB3	4	I/O	MPU	transfer a	nd receive	between the MPU a	and the ST7032.
				These pin	s are not	used during 4-bit op	eration.
					instructio		
				0:enable extension instruction(add contrast/ICON/double			
Ext	1	1	ITO option	height font/ extension instruction)			
	l			1:disable extension instruction(compatible to ST7066U, but without 5x11dot font)			
				Interface		t)	
				0:serial m			
DOD	4	Ι.	MDU			o "VDD" when serial	mode is selected)
PSB	1		MPU		mode(4/8		mode is selected.)
				In I ² C inte	rface PSE	B must connect to VE	DD
							-
				PSB	PSI2B	Interface	
				0	0	No use	
PSI2B	1	ı	ITO option	0	1	SI4	
				1	0	SI2 (I ² C)	
				1	1	Parallel 68	
					generato		
		1		OPR1	OPR2	CGROM	CGRAM
OPR1,	2	1	I ITO option	0	0	240	8
OPR2	_	[.		0	1	250	6
		1		1	0	248	8
				1	1	256	0

Name	Number	I/O	Interfaced with	h Function		
SHLC	1	ı	ITO option	Common signals direction select: 0:Com1~16 Row address 15~0(Invert)		
SINES		'	TTO Option	1:Com1~16 Row address 0~15(Normal)		
				Segment signals direction select:		
		0:Seg1~80 Column address 79~0(Invert)				
				1:Seg1~80 Column address 0~79(Normal)		
COM1 to	16	0	LCD	Common signals that are not used are changed to non-selection waveform. COM9 to COM16		
COM16			202	are non-selection waveforms at 1/8 or 1/9 duty factor		
COMI	2	0	LCD	ICON common signals		
SEG1 to SEG80	80	О	LCD	Segment signals		
				The built-in voltage follower circuit selection		
	2			OPF1 OPF2 Bias select		
OPF1		ı	ITO option	0 0 Built-in voltage follower(only use at EXT=0)		
OPF2				0 1 Built-in bias resistor(3.3K) ±30%		
				1 0 Built-in bias resistor(9.6K) ±30%		
				1 1 External bias resistor select		
CAP1P	1	-	Power supply	For voltage booster circuit(VDD-VSS)		
CAP1N	1	-	Power supply	External capacitor about 0.1u~4.7uf		
VIN	1	-	Power supply	Input the voltage to booster		
VOUT	1	_	Power supply	DC/DC voltage converter. Connect a capacitor between this		
V001			1 Ower suppry	terminal and VIN when the built-in booster is used.		
				Power supply for LCD drive		
V0 to V4	5	-	Power supply	V0-Vss = 7V (Max)		
VDD				Built-in/external Voltage follower circuit		
VSS	2	-	Power supply	VDD: 2.7V to 5.5V, VSS: 0V		
				Internal/External oscillation select		
CLS		ITO option	0:external clock			
				1:internal oscillation		
OSC1 OSC2	2	I/O	Oscillation	When the pin input is an external clock, it must be input to OSC1.		
TEST1,2	2	I/O	Test pin	TEST1,2 must connect to VDD.		

■ EXT option pin difference table

	ST7066U normal mode (EXT=1)	Extension mode (EXT=0)
Booster	Always OFF	ON/OFF control by instruction
Bias (V0~V4)	Can't use the follower circuit Only use external resistor or internal resistor(1/5 bias)	Follower or internal/external resistor selectable
Contrast adjust	Control by external VR	Control by instruction with follower Control by external VR with internal/external resistor
ICON RAM	Can't be use	RAM size has 80 bit width (S1~S80).
Instruction	Control normal instruction similar to ST7066U.	Control extension instruction for low power consumption.
Double height font	Only 5x8 font	Can set 5x8 or 5x16 font
OSC frequency adjust	Only adjust by external clock.	Can set OSC frequency by instruction set.

■ Function Description

System Interface

This chip has all four kinds of interface type with MPU: 4-bit bus, 8-bit bus, serial and fast I^2C interface. 4-bit bus or 8-bit bus is selected by DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. One is data register (DR); the other is instruction register (IR).

The data register (DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM/ICON RAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.

The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

Using RS input pin to select command or data in 4-bit/8-bit bus mode.

RS	R/W	Operation						
L	т	Instruction Write operation (MPU writes Instruction code						
ц	ш	into IR)						
L	Н	Read Busy Flag(DB7) and address counter (DB0 ~ DB6)						
Н	L	Data Write operation (MPU writes data into DR)						
Н	Н	Data Read operation (MPU reads data from DR)						

Table 1. Various kinds of operations according to RS and R/W bits.

I²C interface

It just only could write Data or Instruction to ST7032 by the IIC Interface. It could not read Data or Instruction from ST7032 (except Acknowledge signal).

SCL: serial clock input SDA: serial data input

Slaver address could only set to 0111110, no other slaver address could be set

The I^2C interface send RAM data and executes the commands sent via the I^2C Interface. It could send data bit to the RAM. The I^2C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

BIT TRANSFER

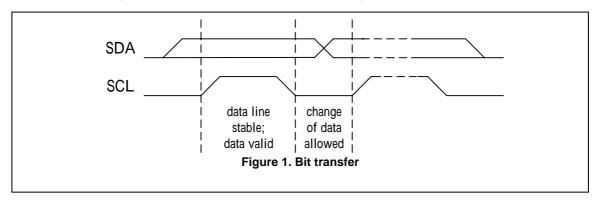
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.1.

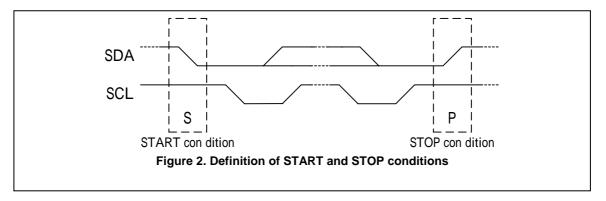
START AND STOP CONDITIONS

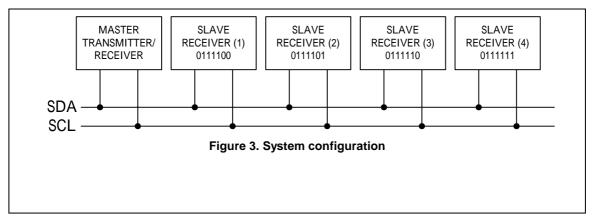
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.2.

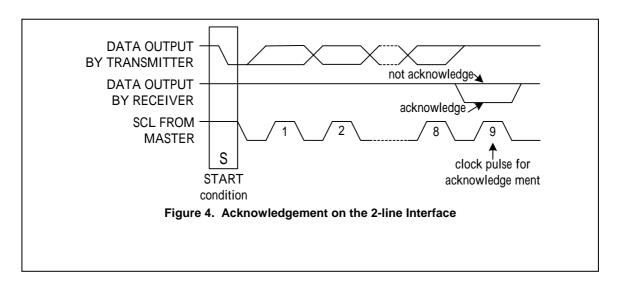
SYSTEM CONFIGURATION

The system configuration is illustrated in Fig.3.


- · Transmitter: the device, which sends the data to the bus
- · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer
- \cdot Slave: the device addressed by a master

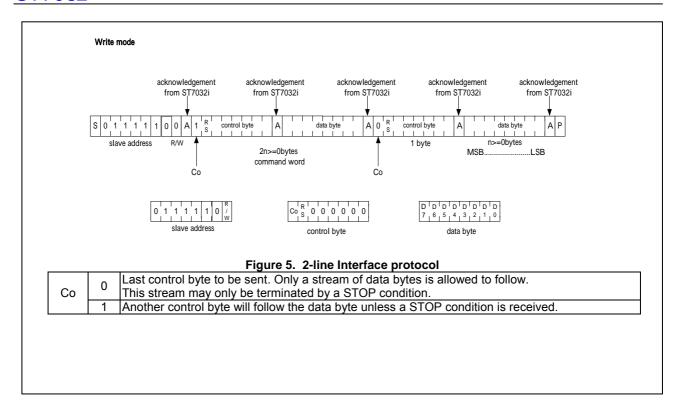

- · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message
- · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- · Synchronization: procedure to synchronize the clock signals of two or more devices.


ACKNOWLEDGE


Acknowledge is not Busy Flag in I2C interface.

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the I²C Interface is illustrated in Fig.4.

I²C Interface protocol


The ST7032 supports command, data write addressed slaves on the bus.

Before any data is transmitted on the I^2C Interface, the device, which should respond, is addressed first. Only one 7-bit slave addresses (0111110) is reserved for the ST7032. The R/W is assigned to 0 for Write only. The I^2C Interface protocol is illustrated in Fig.5.

The sequence is initiated with a START condition (S) from the I^2C Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I^2C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves.

A command word consists of a control byte, which defines Co and RS, plus a data byte.

The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the RS bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the RS bit setting; either a series of display data bytes or command data bytes may follow. If the RS bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7032i device. If the RS bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I²C INTERFACE-bus master issues a STOP condition (P).

During write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register (IR).

The data register (DR) is used as temporary data storage place for being written into DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, writing into RAM, is done automatically. So to speak, after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically.

The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use RS input in I²C interface.

RS	R/W	Operation					
L	L	Instruction Write operation (MPU writes Instruction code into IR)					
Н	L	Data Write operation (MPU writes data into DR)					

Table 2. Various kinds of operations according to RS and R/W bits.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not High.

Address Counter (AC)

Address Counter (AC) stores DDRAM/CGRAM/ICON RAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM/ICON RAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports.

Display Data RAM (DDRAM)

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 7 for the relationships between DDRAM addresses and positions on the liquid crystal display.

The DDRAM address (ADD) is set in the address counter (AC)as hexadecimal.

> 1-line display (N = 0) (Figure 8)

When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the ST7032, 16 characters are displayed. See Figure 8.

When the display shift operation is performed, the DDRAM address shifts. See Figure 9.

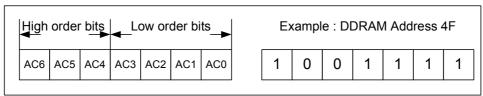


Figure 7. DDRAM Address

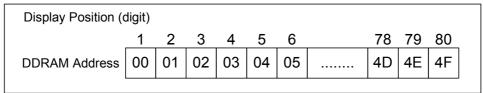


Figure 8. 1-Line Display

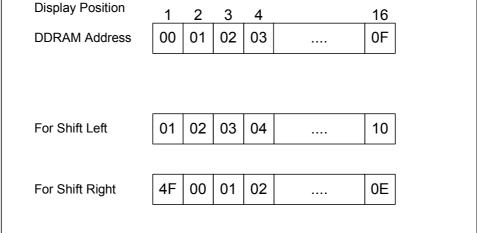


Figure 9. 1-Line by 16-Character Display Example

> 2-line display (N = 1) (Figure 10)

Case 1: When the number of display characters is less than 40 $_{\cdot}$ 2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. See Figure 10.

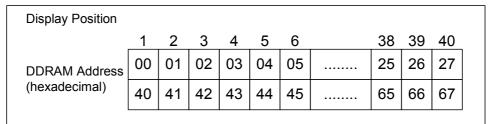


Figure 10. 2-Line Display

Case 2: For a 16-character _ 2-line display See Figure 11. When display shift operation is performed, the DDRAM address shifts. See Figure 11.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F	10
41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50
27	00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E
67	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E
	00 40 01 41	00 01 40 41 01 02 41 42 27 00	00 01 02 40 41 42 01 02 03 41 42 43 27 00 01	00 01 02 03 40 41 42 43 01 02 03 04 41 42 43 44 27 00 01 02	00 01 02 03 04 40 41 42 43 44 01 02 03 04 05 41 42 43 44 45 27 00 01 02 03	00 01 02 03 04 05 40 41 42 43 44 45 01 02 03 04 05 06 41 42 43 44 45 46 27 00 01 02 03 04	00 01 02 03 04 05 06 40 41 42 43 44 45 46 01 02 03 04 05 06 07 41 42 43 44 45 46 47 27 00 01 02 03 04 05	00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47 01 02 03 04 05 06 07 08 41 42 43 44 45 46 47 48 27 00 01 02 03 04 05 06	00 01 02 03 04 05 06 07 08 40 41 42 43 44 45 46 47 48 01 02 03 04 05 06 07 08 09 41 42 43 44 45 46 47 48 49 27 00 01 02 03 04 05 06 07	00 01 02 03 04 05 06 07 08 09 40 41 42 43 44 45 46 47 48 49 01 02 03 04 05 06 07 08 09 0A 41 42 43 44 45 46 47 48 49 4A 27 00 01 02 03 04 05 06 07 08	00 01 02 03 04 05 06 07 08 09 0A 40 41 42 43 44 45 46 47 48 49 4A 01 02 03 04 05 06 07 08 09 0A 0B 41 42 43 44 45 46 47 48 49 4A 4B 27 00 01 02 03 04 05 06 07 08 09	00 01 02 03 04 05 06 07 08 09 0A 0B 40 41 42 43 44 45 46 47 48 49 4A 4B 01 02 03 04 05 06 07 08 09 0A 0B 0C 41 42 43 44 45 46 47 48 49 4A 4B 4C 27 00 01 02 03 04 05 06 07 08 09 0A	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 27 00 01 02 03 04 05 06 07 08 09 0A 0B	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 27 00 01 02 03 04 05 06 07 08 09 0A 0B 0C	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 27 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D

Figure 11. 2-Line by 16-Character Display Example

Character Generator ROM (CGROM)

The character generator ROM generates 5×8 dot character patterns from 8-bit character codes. It can generate $240/250/248/256 \times 8$ dot character patterns (select by OPR1/2 ITO pin). User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CGRAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight character patterns can be written.

Write into DDRAM the character codes at the addresses shown as the left column of Table 3 to show the character patterns stored in CGRAM.

See Table 4 for the relationship between CGRAM addresses and data and display patterns. Areas that are not used for display can be used as general data RAM.

ICON RAM

In the ICON RAM, the user can rewrite icon pattern by program.

There are totally 80 dots for icon can be written.

See Table 5 for the relationship between ICON RAM address and data and the display patterns.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area.(In I²C interface the reading function is invalid.)

LCD Driver Circuit

LCD Driver circuit has 17 common and 80 segment signals for LCD driving. Data from CGRAM/CGROM/ICON is transferred to 80 bit segment latch serially, and then it is stored to 80 bit shift latch. When each common is selected by 17 bit common register, segment data also output through segment driver from 80 bit segment latch.

Cursor/Blink Control Circuit

It can generate the cursor or blink in the cursor/blink control circuit. The cursor or the blink appears in the digit at the display data RAM address set in the address counter.

Table 3. Correspondence between Character Codes and Character Patterns

ST7032-0D (ITO option OPR1=1, OPR2=1)

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000																
0001																
0010																
0011																
0100																
0101																
0110																
0111																
1000																
1001																
1010																
1011																
1100																
1101																
1110																
1111																

			act RAI								RAN res					ara CG					3
b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0
					0	0	0				0	0	0				1	1	1	1	1
					0	0	0				0	0	1				0	0	1	0	0
					0	0	0				0	1	0				0	0	1	0	0
0	0	0	0	_	0	0	0	0	0	0	0	1	1	_	_	_	0	0	1	0	0
ľ	U	O	O		0	0	0				1	0	0				0	0	1	0	0
					0	0	0				1	0	1				0	0	1	0	0
					0	0	0				1	1	0				0	0	1	0	0
					0	0	0				1	1	1				0	0	0	0	0
					0	0	1				0	0	0				1	1	1	1	0
					0	0	1				0	0	1				1	0	0	0	1
					0	0	1				0	1	0				1	0	0	0	1
0	0	0	0	_	0	0	1	0	0	1	0	1	1	l _	_	_	1	1	1	1	0
ľ	U	0	O		0	0	1			'	1	0	0				1	0	1	0	0
					0	0	1				1	0	1				1	0	0	1	0
					0	0	1				1	1	0				1	0	0	0	1
					0	0	1				1	1	1				0	0	0	0	0

Table 4. Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data)

Notes:

- 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
- 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor presence.
- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
- 4. As shown Table 4, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.
- 5. "1" for CGRAM data corresponds to display selection and "0" to non-selection, "-" Indicates no effect.
- 6. Different OPR1/2 ITO option can select different CGRAM size.

When SHLS=1, ICON RAM map refer below table

ICON address				ICON R	RAM bits			
100N address	D7	D6	D5	D4	D3	D2	D1	D0
00H	-	-	-	S1	S2	S3	S4	S5
01H	-	-	-	S6	S 7	S8	S9	S10
02H	-	-	-	S11	S12	S13	S14	S15
03H	-	-	-	S16	S17	S18	S19	S20
04H	-	-	-	S21	S22	S23	S24	S25
05H	-	-	-	S26	S27	S28	S29	S30
06H	-	-	-	S31	S32	S33	S34	S35
07H	-	-	-	S36	S37	S38	S39	S40
H80	-	-	-	S41	S42	S43	S44	S45
09H	-	-	-	S46	S47	S48	S49	S50
0AH	-	-	-	S51	S52	S53	S54	S55
0BH	-	-	-	S56	S57	S58	S59	S60
0CH	-	-	-	S61	S62	S63	S64	S65
0DH	-	-	-	S66	S67	S68	S69	S70
0EH	-	-	-	S71	S72	S73	S74	S75
0FH	-	-	-	S76	S77	S78	S79	S80

When SHLS=0, ICON RAM map refer below table

ICON address				ICON R	AM bits			
ICON address	D7	D6	D5	D4	D3	D2	D1	D0
00H	-	-	-	S80	S79	S78	S77	S76
01H	-	-	-	S75	S74	S73	S72	S71
02H	-	-	-	S70	S69	S68	S67	S66
03H	-	-	-	S65	S64	S63	S62	S61
04H	-	-	-	S60	S59	S58	S57	S56
05H	-	-	-	S55	S54	S53	S52	S51
06H	-	-	-	S50	S49	S48	S47	S46
07H	-	-	-	S45	S44	S43	S42	S41
08H	-	-	-	S40	S39	S38	S37	S36
09H	-	-	-	S35	S34	S33	S32	S31
0AH	-	-	-	S30	S29	S28	S27	S26
0BH	-	-	-	S25	S24	S23	S22	S21
0CH	-	-	-	S20	S19	S18	S17	S16
0DH	-	-	-	S15	S14	S13	S12	S11
0EH	-	-	-	S10	S9	S8	S7	S6
0FH	-	-	-	S5	S4	S 3	S2	S1

Table 5. ICON RAM map

When ICON RAM data is filled the corresponding position displayed is described as the following table.

■ Instructions

There are four categories of instructions that:

- Designate ST7032 functions, such as display format, data length, etc.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Others

instruction table at "Normal mode"

(When "EXT" option pin connect to VDD, the instruction set follow below table)

In almostices		•		nstr			-				December (able)		nstruction T	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description		OSC= 540kHz	OSC= 700KHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 us	18.5 us	14.3 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 us	18.5 us	14.3 us
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	26.3 us	18.5 us	14.3 us
Function Set	0	0	0	0	1	DL	N	х	х	х	DL: interface data is 8/4 bits N: number of line is 2/1	26.3 us	18.5 us	14.3 us
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	26.3 us	18.5 us	14.3 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 us	18.5 us	14.3 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	0	0
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	26.3 us	18.5 us	14.3 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	26.3 us	18.5 us	14.3 us

Note:

Be sure the ST7032 is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7032. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

> instruction table at "Extension mode"

(when "EXT" option pin connect to Vss, the instruction set follow below table)

In atmostic a				nstr							December to the second		nstructio ecution T	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description		OSC= 540kHz	OSC= 700KHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	0	0	0	0	0	0	1	х	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 us	18.5 us	14.3 us
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 us	18.5 us	14.3 us
Function Set	0	0	0	0	1	DL	N	DH	*0	IS	DL: interface data is 8/4 bits N: number of line is 2/1 DH: double height font IS: instruction table select	26.3 us	18.5 us	14.3 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 us	18.5 us	14.3 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	0	0
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 us	18.5 us	14.3 us
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 us	18.5 us	14.3 us

Note *: this bit is for test command, and must always set to "0"

							Ins	truc	ctio	n ta	ble 0(IS=0)			
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	х	х	S/C and R/L: Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	26.3 us	18.5 us	14.3 us
Set CGRAM	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	26.3 us	18.5 us	14.3 us

							Ins	truc	ctio	n ta	ble 1(IS=1)			
											BS=1:1/4 bias			
Internal OSC	0	0	0	0	0	1	BS	F2	F1	F0	BS=0:1/5 bias	26.3 us	18 5 us	1/1/3/116
frequency	J	o	U	"	0	'	ВО	12	' '	10	F2~0: adjust internal OSC	20.5 us	10.5 45	14.5 us
											frequency for FR frequency.			
Set ICON	0	0	0	4	0	0	۸.00	400	101	4.00	Set ICON address in address	26.3 us	10 E 110	142
address	U	U	U	'	U	U	AC3	AC2	ACT	AC0	counter.	20.3 us	10.5 us	14.3 us
Power/ICON											Ion: ICON display on/off			
control/Contr		0	0	1	0	1		D	0.5	C4	Bon: set booster circuit on/off	26.3 us	10 E 110	142
ast set	U	U	U	'	U	1	Ion	Bon	C5	C4	C5,C4: Contrast set for internal	20.3 us	10.5 us	14.3 us
asi sei											follower mode.			
Follower								-	-	D-1	Fon: set follower circuit on/off			
control	0	0	0	1	1	0	Fon		Rab		Rab2~0:	26.3 us	18.5 us	14.3 us
COITHOI								2	1	0	select follower amplified ratio.			
Contrast set	0	0	_				-00	-00	0.4	-00	Contrast set for internal follower	20.2	40 F	442
Conitast set	U	U	0	1	1	1	C3	C2	C1	C0	mode.	26.3 us	18.5 US	14.3 US

■ Instruction Description

Clear Display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

Return Home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	X

Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM do not change.

Entry Mode Set

RS R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0 0	0	0	0	0	0	1	I/D	S

Set the moving direction of cursor and display.

I/D : Increment / decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

> S: Shift of entire display

When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed. If S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1": shift left, I/D = "0" : shift right).

S	I/D	Description
Н	Н	Shift the display to the left
Н	L	Shift the display to the right

^{*} CGRAM operates the same as DDRAM, when read from or write to CGRAM.

Display ON/OFF

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	O	В

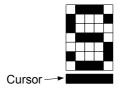
Control display/cursor/blink ON/OFF 1 bit register.

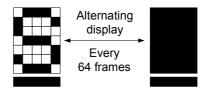
> D: Display ON/OFF control bit

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data is remained in DDRAM.

C: Cursor ON/OFF control bit


When C = "High", cursor is turned on.


When C = "Low", cursor is disappeared in current display, but I/D register remains its data.

> B: Cursor Blink ON/OFF control bit

When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position.

When B = "Low", blink is off.

Cursor or Display Shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	X	Х

S/C: Screen/Cursor select bit

When S/C="High", Screen is controlled by R/L bit.

When S/C="Low", Cursor is controlled by R/L bit.

R/L: Right/Left

When R/L="High", set direction to right.

When R/L="Low", set direction to left.

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed.

S/C	R/L	Description	AC Value
L	L	Shift cursor to the left	AC=AC-1
L	Н	Shift cursor to the right	AC=AC+1
Н	L	Shift display to the left. Cursor follows the display shift	AC=AC
Н	Н	Shift display to the right. Cursor follows the display shift	AC=AC

Function Set

RS	R/W	 DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	Z	DH	0	IS

DL : Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

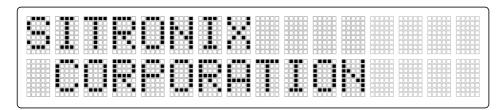
When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode.

When in 4-bit bus mode, it needs to transfer 4-bit data by two times.

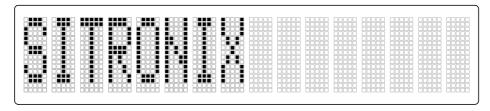
N: Display line number control bit

When N = "High", 2-line display mode is set.

When N = "Low", it means 1-line display mode.


DH : Double height font type control bit

When DH = "High" and N= "Low", display font is selected to double height mode(5x16 dot),RAM address can only use $00H\sim27H$.


When DH= "High" and N= "High", it is forbidden.

When DH = "Low", display font is normal (5x8 dot).

N	DH	EXT option pin c	onnect to high	EXT option pin connect to low			
IN	ВΠ	Display Lines	Character Font	Display Lines	Character Font		
L	L	1	5x8	1	5x8		
L	Н	1	5x8	1	5x16		
Н	L	2	5x8	2	5x8		
Н	Н	2	5x8	Forb	idden		

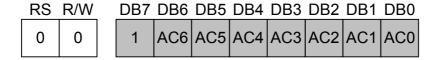
2 line mode normal display (DH=0/N=1)

1 line mode with double height font (DH=1/N=0)

> IS: normal/extension instruction select

When IS=" High", extension instruction be selected (refer extension instruction table)

When IS=" Low", normal instruction be selected (refer normal instruction table)


Set CGRAM Address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

Set DDRAM Address

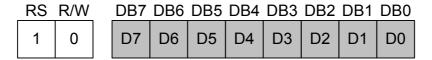
Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH".

In 2-line display mode (N = 1), DDRAM address in the 1st line is from "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

Read Busy Flag and Address



When BF = "High", indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted.

The address Counter (AC) stores DDRAM/CGRAM addresses, transferred from IR.

After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1.

Write Data to CGRAM, DDRAM or ICON RAM

Write binary 8-bit data to CGRAM, DDRAM or ICON RAM

The selection of RAM from DDRAM, CGRAM or ICON RAM, is set by the previous address set instruction: DDRAM address set, CGRAM address set, ICON RAM address set. RAM set instruction can also determine the AC direction to RAM.

After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Read Data from CGRAM, DDRAM or ICON RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM/ICON RAM

The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.

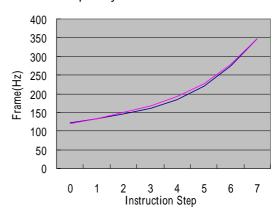
Read data must be "set address" before this instruction.

Bias selection/Internal OSC frequency adjust

RS	R/W	 DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	BS	F2	F1	F0

BS: bias selection

When BS="High", the bias will be 1/4


When BS="Low", the bias will be 1/5

BS will be invalid when external bias resistors are used (OPF1=1, OPF2=1)

> F2,F1,F0 : Internal OSC frequency adjust

When CLS connect to high, that instruction can adjust OSC and Frame frequency.

Interna	I frequency	/ adjust	Frame frequency (Hz) (2 line mode)			
F2	F1	F0	VDD = 3.0 V	VDD = 5.0 V		
0	0	0	122	120		
0	0	1	131	133		
0	1	0	144	149		
0	1	1	161	167		
1	0	0	183	192		
1	0	1	221	227		
1	1 1		274	277		
1	1	1	347	347		

Set ICON RAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	AC3	AC2	AC1	AC0

Set ICON RAM address to AC.

This instruction makes ICON data available from MPU.

When IS=1 at Extension mode,

The ICON RAM address is from "00H" to "0FH".

Power/ICON control/Contrast set(high byte)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	1	Ion	Вом	C5	C4

Ion: set ICON display on/off

When Ion = "High", ICON display on.

When Ion = "Low", ICON display off.

Bon: switch booster circuit

Bon can only be set when internal follower is used (OPF1=0, OPF2=0).

When Bon = "High", booster circuit is turn on.

When Bon = "Low", booster circuit is turn off.

C5,C4 : Contrast set(high byte)

C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0). They can more precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage for LCD driver.

Follower control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
)	0	1	1	0	Eou	Rab	Rab	Rab
	O	U	_	-	O	FON	2	1	0

> Fon: switch follower circuit

Fon can only be set when internal follower is used (OPF1=0,OPF2=0).

When Fon = "High", internal follower circuit is turn on.

When Fon = "Low", internal follower circuit is turn off.

> Rab2,Rab1,Rab0 : V0 generator amplified ratio

Rab2,Rab1,Rab0 can only be set when internal follower is used (OPF1=0,OPF2=0). They can adjust the amplified ratio of V0 generator. The details please refer to the supply voltage for LCD driver.

Contrast set(low byte)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	1	1	СЗ	C2	C1	C0

C3,C2,C1,C0:Contrast set(low byte)

C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0). They can more precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage for LCD driver.

■ Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the ST7032 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state (BF = 1) until the initialization ends. The busy state lasts for 40 ms after VDD rises to stable.

- 1. Display clear
- 2. Function set:

DL = 1; 8-bit interface data

N = 0; 1-line display

DH=0; normal 5x8 font

IS=0; use instruction table 0

- 3. Display on/off control:
 - D = 0; Display off
 - C = 0; Cursor off
 - B = 0; Blinking off
- 4. Entry mode set:
 - I/D = 1; Increment by 1
 - S = 0; No shift
- 5. Internal OSC frequency

(F2,F1,F0)=(1,0,0)

6. ICON control

Ion=0; ICON off

7. Power control

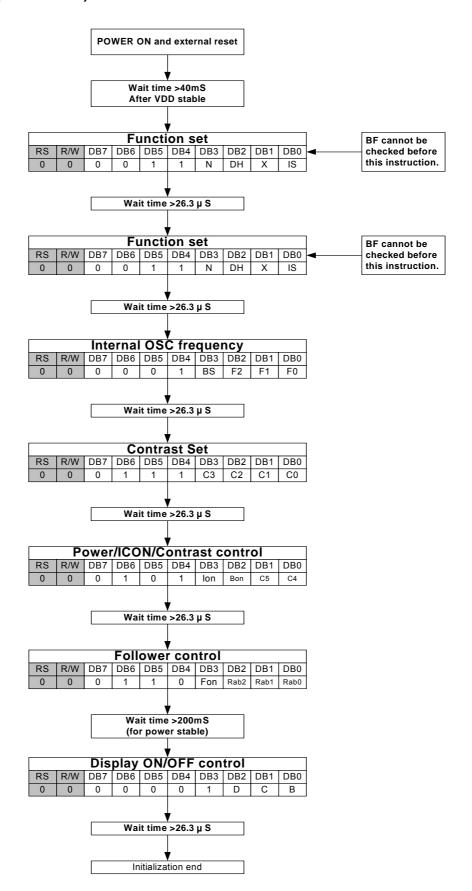
BS=0; 1/5bias

Bon=0: booster off

Fon=0; follower off

(C5,C4,C3,C2,C1,C0)=(1,0,0,0,0,0)

(Rab2,Rab1,Rab0)=(0,1,0)


Note:

If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the ST7032.

When internal Reset Circuit not operate, ST7032 can be reset by XRESET pin from MPU control signal.

Initializing by Instruction

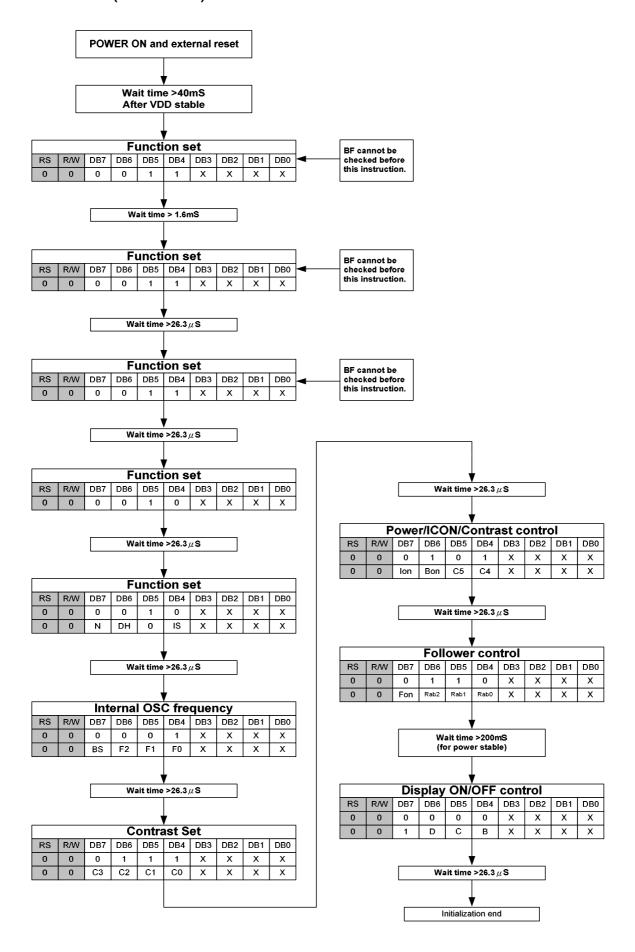
8-bit Interface (fosc=380KHz)

CHK BUSY:

CLR

JΒ

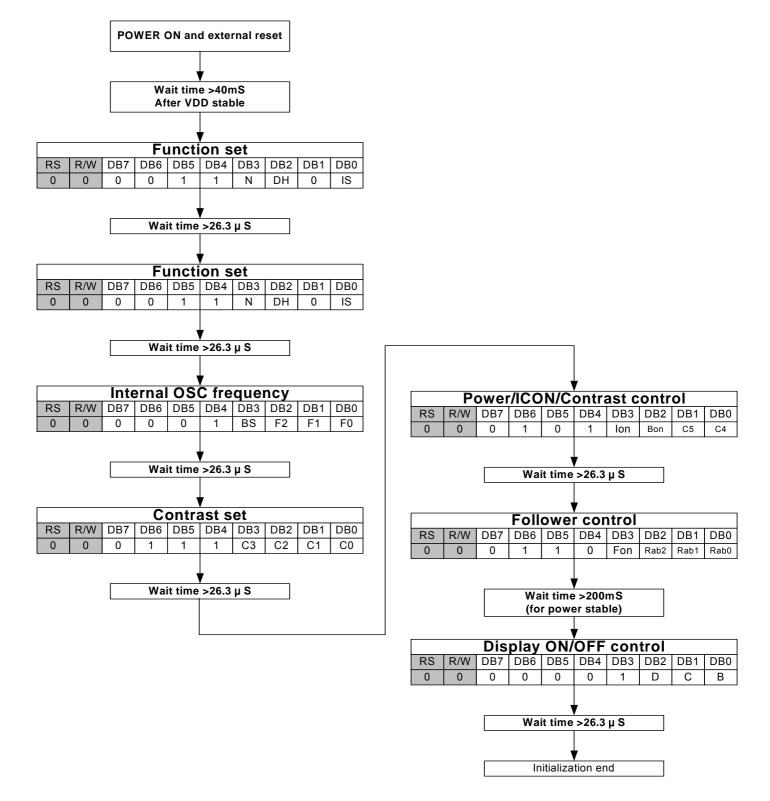
RS SETB RW SETB E


P1.7,\$

Initial Program Code Example For 8051 MPU(8 Bit Interface): **INITIAL START:** CALL HARDWARE RESET CALL DELAY40mS MOV A,#38H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit,N=1,5*7dot CALL DELAY30uS MOV A,#39H :FUNCTION SET CALL WRINS NOCHK ;8 bit,N=1,5*7dot,IS=1 CALL DELAY30uS MOV A,#14H ;Internal OSC frequency adjustment CALL WRINS_CHK CALL DELAY30uS MOV A,#78H ; Contrast control CALL WRINS CHK CALL DELAY30uS MOV A,#5EH ;Power/ICON/Contrast control CALL WRINS CHK CALL DELAY30uS MOV A,#6AH ;Follower control CALL WRINS CHK CALL DELAY200mS ;for power stable ;DISPLAY ON MOV A,#0CH CALL WRINS_CHK CALL DELAY30uS MOV A,#01H ;CLEAR DISPLAY CALL WRINS CHK CALL DELAY2mS MOV A,#06H **:ENTRY MODE SET** CALL WRINS CHK **;CURSOR MOVES TO RIGHT** CALL DELAY30uS MAIN_START: XXXX XXXX XXXX **XXXX** WRINS CHK: CALL CHK BUSY WRINS NOCHK: CLR ;EX:Port 3.0 RS CLR RW ;EX:Port 3.1 SETB E ;EX:Port 3.2 MOV P1,A ;EX:Port 1=Data Bus CLR Ε MOV P1,#FFH ;For Check Busy Flag **RET**

CLR	Ε			
RET				

;Check Busy Flag


4-bit Interface (fosc=380KHz)

XXXX

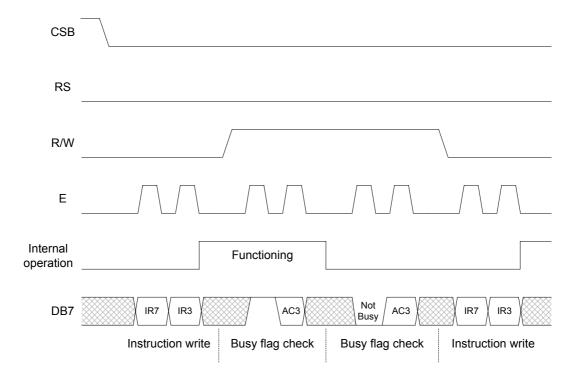
L_STAF						
CALL	HARDWARE_R	ESET				
CALL	DELAY40mS					
MOV	A,#38H	;FUNCTION SET	;			
CALL	WRINS_ONCE	:8 bit. 5*7 dot	WRIN	S_CHK	•	
CALL		,,			CHK_BUSY	
07.1			WRIN	S_NOC		
MOV	A,#38H	;FUNCTION SET	*****	PUSH		
	WRINS ONCE	;8 bit, 5*7 dot			A,#F0H	
CALL	DELAY30uS	,0 011, 0 7 001		CLR	RS	;EX:Port 3.0
OALL	DELATOUG			CLR	RW	;EX:Port 3.1
MOV	A,#38H	;FUNCTION SET		SETB		;EX:Port 3.1
	WRINS_ONCE	;8 bit, 5*7 dot			P1,A	;EX:Port1=Data
CALL	DELAY30uS			CLR	E	
	a =a			POP	A _.	
CALL	_			SWAP		
MOV	A,#28H	;FUNCTION SET	WRIN			
CALL	WRINS_ONCE	; 4 bit, 5*7 dot		ANL	A,#F0H	
CALL	DELAY30uS			CLR	RS	
				CLR	RW	
MOV	A,#29H	;FUNCTION SET		SETB	E	
CALL	WRINS CHK	; 4 bit $N = 1, 5*7$ dot		MOV	P1,A	
CALL	DELAY30uS	; IS = 1		CLR	E	
		,		MOV	P1,#FFH	;For Check Bus F
MOV	A,#14H	;Internal OSC		RET	,	,,
	WRINS_CHK	,	·			
CALL	DELAY30uS		, CHK_I	RUSY.		;Check Busy Fla
OALL	DELATOUG		01111_1	PUSH	Δ	,Officer Busy i la
MOV	A,#78H	;Contrast set		MOV	P1,#FFH	
CALL		,Contrast set	\$1	IVIOV	Γ 1, π 1 1 1 1	
	WRINS_CHK DELAY30uS		φι	CL D	RS	
CALL	DELATOUS			CLR		
MOV	Λ <i>4</i> ΓΓΙΙ	Daa./ICON/Caratasat		SETB	RW	
MOV		Power/ICON/Contrast		SETB	E	
CALL	WRINS_CHK			MOV	A,P1	
CALL	DELAY30uS			CLR	Ε	
				MOV	P1,#FFH	
MOV	A,#6AH	;Follower control		CLR	RS	
	WRINS_CHK			SETB	RW	
CALL	DELAY200mS	;For power stable		SETB	E	
				NOP		
MOV	A,#0CH	;DISPLAY ON		CLR	E	
CALL	WRINS CHK			JB	A.7,\$1	
CALL	DELAY30uS			POP	Α	
				RET		
MOV	A,#01H	;CLEAR DISPLAY				
	WRINS_CHK	,0				
CALL	DELAY2mS					
OALL	DELATZIIIO					
MOV	A,#06H	;ENTRY MODE SET				
		,LINTIXT WODE SET				
	WRINS_CHK					
CALL	DELAY30uS					

Serial interface & IIC interface (fosc = 380KHz)

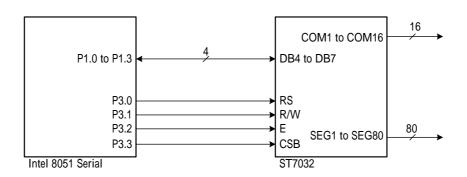
POP

RET

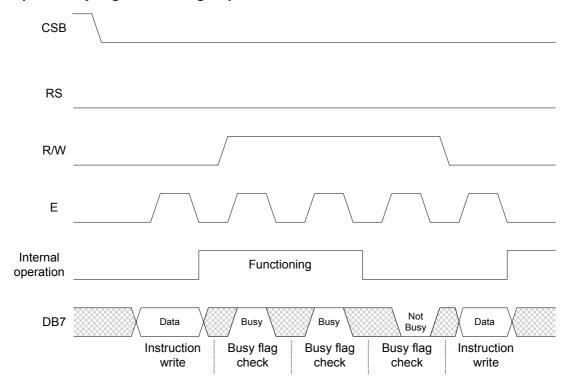
CALL DLY1.5mS

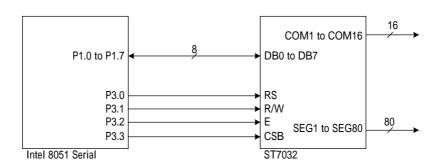

Initial Program Code Example For 8051 MPU(Serial Interface): **INITIAL START:** CALL HARDWARE_RESET CALL DELAY40mS MOV A,#38H ;FUNCTION SET CALL WRINS NOCHK ;8 bit,N=1,5*7dot CALL DELAY30uS MOV A,#39H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit,N=1,5*7dot,IS=1 CALL DELAY30uS MOV A,#14H ;Internal OSC frequency adjustment CALL WRINS_NOCHK CALL DELAY30uS MOV A,#78H :Contrast set CALL WRINS NOCHK CALL DELAY30uS MOV A,#5EH ;Power/ICON/Contrast control CALL WRINS_NOCHK CALL DELAY30uS MOV A,#6AH ;Follower control CALL WRINS NOCHK CALL DELAY200mS ;for power stable MOV A,#0CH ;DISPLAY ON CALL WRINS_NOCHK CALL DELAY30uS MOV A,#01H ;CLEAR DISPLAY CALL WRINS NOCHK CALL DELAY2mS MOV A,#06H **;ENTRY MODE SET** CALL WRINS_NOCHK ; CURSOR MOVES TO RIGHT CALL DELAY30uS MAIN START: XXXX XXXX XXXX XXXX WRINS NOCHK: PUSH 1 MOV R1,#8 CLR RS \$1 RLC Α MOV SI,C SET SCL NOP CLR SCL DJNZ R1,\$1

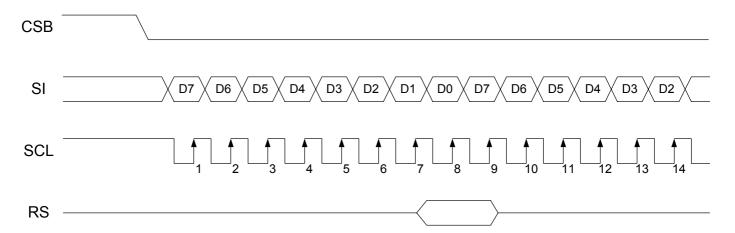
Interfacing to the MPU


The ST7032 can send data in two 4-bit operations/one 8-bit operation, serial 1 bit operation or fast I²C operation, thus allowing interfacing with 4-bit, 8-bit or I²C MPU.

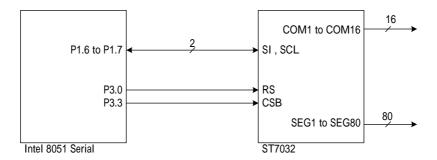
For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the ST7032 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.


Example of busy flag check timing sequence

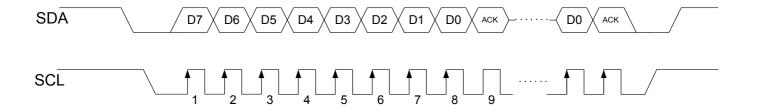

Intel 8051 interface(4 Bit)


- For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.
- Example of busy flag check timing sequence

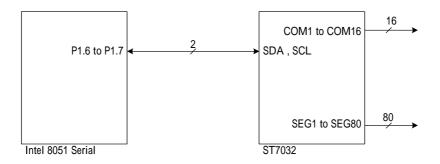
> Intel 8051 interface(8 Bit)



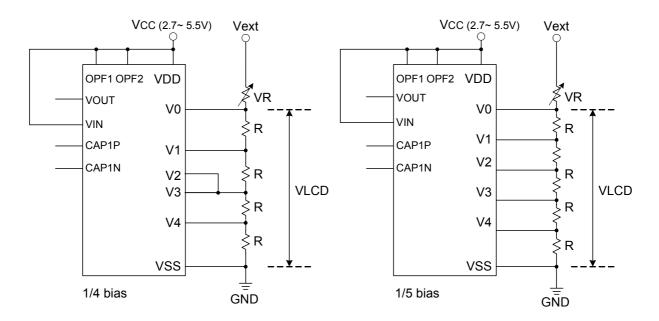
- For serial interface data, only two bus lines (DB6 to DB7) are used.
- > Example of timing sequence



Note: The falling edge must cause on CSB before the serial clock (SCL) active.

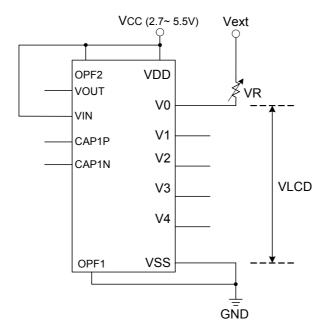

> Intel 8051 interface(Serial)

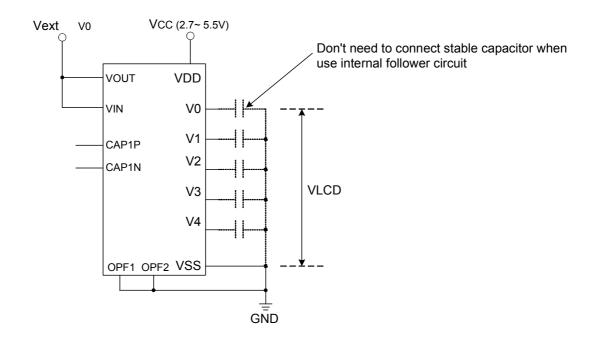
- For I²C interface data, only two bus lines (DB6 to DB7) are used.
- > Example of timing sequence

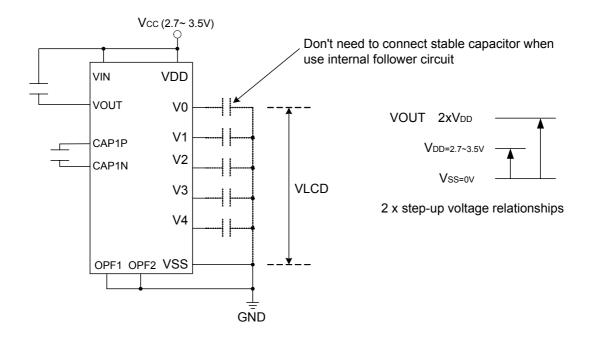


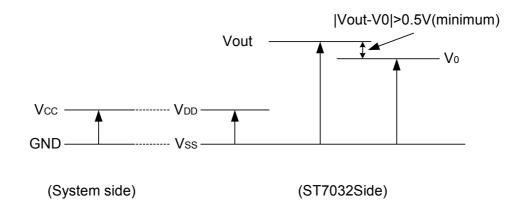
Intel 8051 interface(I²C)

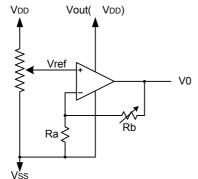
■ Supply Voltage for LCD Drive


 When external bias resistors are used (OPF1=1,OPF2=1)


 When built-in bias resistors(9.6K) are used (OPF1=1,OPF2=0)

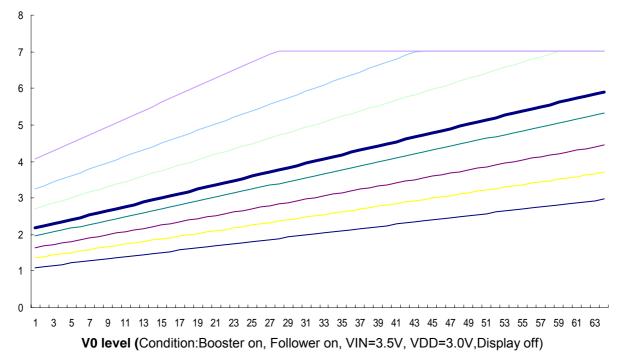

When built-in bias resistors(3.3K) are used (OPF1=0,OPF2=1)


 When built-in voltage followers with external Vout are used (OPF1=0,OPF2=0 and instruction setting Bon=0,Fon=1)


When built-in booster and voltage followers are used(OPF1=0,OPF2=0)

Note: Ensure V0 level stable, that must let |Vout-V0| over 0.5V(if panel size over 4.5",the |Vout-V0| propose over 0.8V).

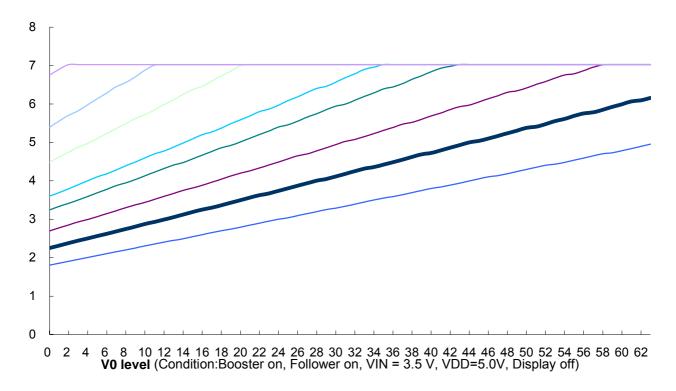
V0 voltage follower value calculation



V0=(1+
$$\frac{Rb}{Ra}$$
)* Vref

While Vref=VDD *(
$$\frac{+36}{100}$$
)

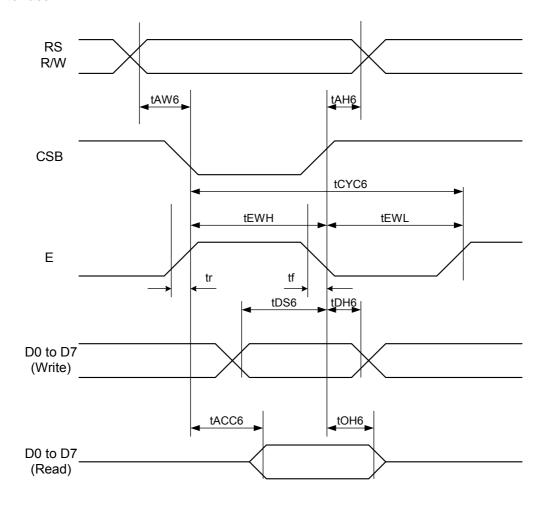
C5	C4	C3	C2	C1	C0		
0	0	0	0	0	0	0	
0	0	0	0	0	1	1	
0	0	0	0	1	0	2	
1	1	1	1	0	1	61	
1	1	1	1	1	0	62	
1	1	1	1	1	1	63	


Rab2	Rab1	Rab0	1+Rb/Ra
0	0	0	1
0	0	1	1.25
0	1	0	1.5
0	1	1	1.8
1	0	0	2
1	0	1	2.5
1	1	0	3
1	1	1	3.75

The recommended curve: follower = 04H

Notes:

- 1. Vout V0 V1 V2 V3 V4 Vss must be maintained.
- 2. If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout.
- 3. internal built-in booster can only be used when OPF1=0,OPF2=0.

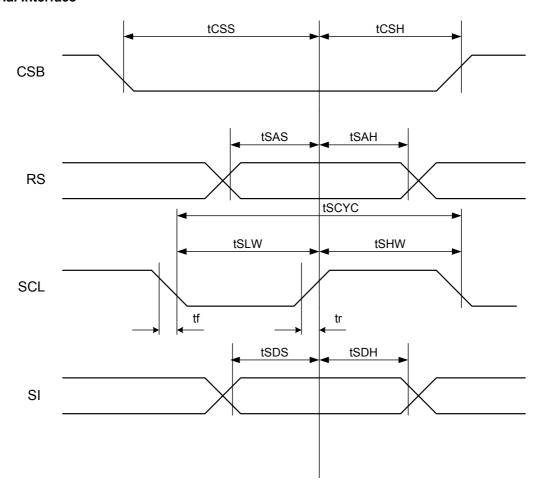

The recommanded curve: follower = 01H

Notes:

- 1. Vout V0 V1 V2 V3 V4 Vss must be maintained.
- 2. If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout.
- 3. internal built-in booster can only be used when OPF1=0,OPF2=0.

■ AC Characteristics

• 68 Interface

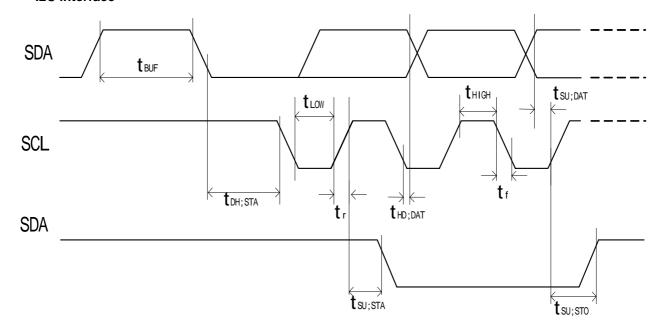


 $(Ta = 25^{\circ}C)$

Item	Signal	Symbol	Condition		7 to 4.5V ing		5 to 5.5V ting	Units
item	Signal	Symbol	Condition	Min.	Max.	Min.	Max.	Ullits
Address hold time	RS	t AH6	_	20	-	20	-	ns
Address setup time	RS	taw6		20	-	20	-	
System cycle time	RS	tcyc6	_	400	-	280	-	ns
Data setup time	D0 to D7	tDS6		100	-	80	-	20
Data hold time	D0 to D7	tDH6	_	40	-	20	-	- ns
Access time	D0 to D7	tacc6	Cı = 100 pF	-	500	-	400	20
Output disable time	D0 to D7	toн6	CL = 100 pF	300	-	150	-	ns
Enable Rise/Fall time	E	tr,tf	_	-	20	-	20	ns
Enable H pulse time	E	t EWH	_	200	-	120	-	ns
Enable L pulse time	Е	tewL	_	150	-	130	-	ns

Note: All timing is specified using 20% and 80% of VDD as the reference.

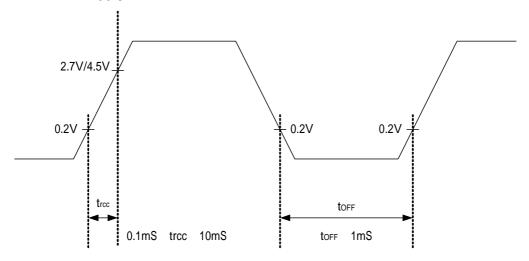
Serial Interface



(Ta = 25°C)

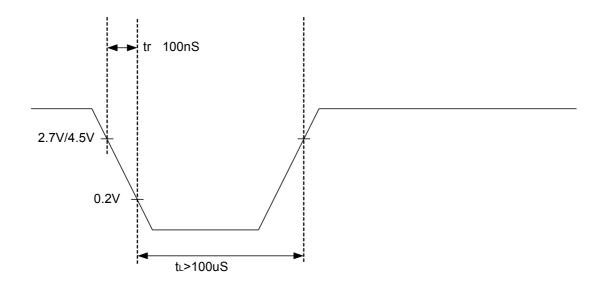
							(1a = 25°C)
Item	Signal	Symbol	Condition		7 to 4.5V ting		to 5.5V ting	Units
KGIII	Olgilai	Cymbol	Condition	Min.	Max.	Min.	Max.	Omis
Serial Clock Period		tscyc		200	-	100	-	
SCL "H" pulse width	SCL	t shw	_	20	-	20	-	ns
SCL "L" pulse width		t sLW		160	-	120	-	
SCL Rise/Fall time	SCL	tr,tf	_	-	20	-	20	ns
Address setup time	RS	tsas		10	-	10	-	20
Address hold time	RS	t sah	_	250	-	150	-	ns
Data setup time	- SI	tsds		10	-	10	-	ns
Data hold time	31	tsdн		10	-	20	-	115
CS-SCL time	CS	tcss		20	-	20	-	200
	03	tсsн	_	350	-	200	-	ns

 $^{^{\}star}1$ All timing is specified using 20% and 80% of VDD as the standard.


I2C interface

(Ta = 25°C)

Item	Signal Symbol Condition		Dati	/DD=2.7 to 4.5V Rating		VDD=4.5 to 5.5V Rating		
itom			Condition	Min.	Max.	Min.	Max.	Units
SCL clock frequency		f _{SCLK}		DC	400	DC	400	KHz
SCL clock low period	SCL	t_{LOW}	_	1.3	_	1.3	_	
SCL clock high period		t _{HIGH}		0.6	_	0.6	_	us
Data set-up time	SI	t _{SU;DAT}		180	_	100	_	ns
Data hold time	31	t _{HD:DAT}] —	0	0.9	0	0.9	us
SCL,SDA rise time	SCL,	t _r		20+0.1C _b	300	20+0.1C _b	300	no
SCL,SDA fall time	SDA	t _f	<u> </u>	20+0.1C _b	300	20+0.1C _b	300	ns
Capacitive load represent by each bus line		C _b	_	_	400	_	400	pf
Setup time for a repeated START condition	SI	t _{SU;STA}	_	0.6	_	0.6	_	us
Start condition hold time		t _{HD;STA}	_	0.6	_	0.6	_	us
Setup time for STOP condition		t _{su;sto}	_	0.6	_	0.6	_	us
Bus free time between a Stop and START condition	SCL	t _{BUF}	_	1.3	_	1.3	_	us


• Internal Power Supply Reset

Notes:

- toff compensates for the power oscillation period caused by momentary power supply oscillations.
- Specified at 4.5V for 5V operation, and at 2.7V for 3V operation.
- If 2.7V/4.5V is not reached during 3V/5V operation, internal reset circuit will not operate normally.

Hardware reset(XRESET)

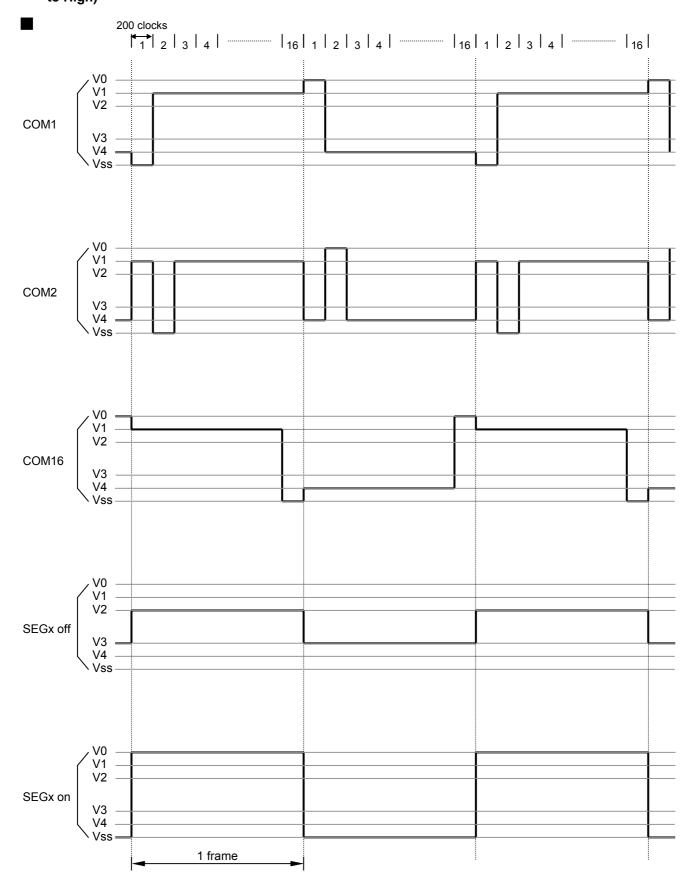
■ Absolute Maximum Ratings

Characteristics	Symbol	Value
Power Supply Voltage	VDD	-0.3 to +7.0
LCD Driver Voltage	V_{LCD}	7.0- Vss to -0.3+Vss
Input Voltage	V _{IN}	-0.3 to VDD+0.3
Operating Temperature	T _A	-40°C to + 90°C
Storage Temperature	T _{STO}	-55°C to + 125°C

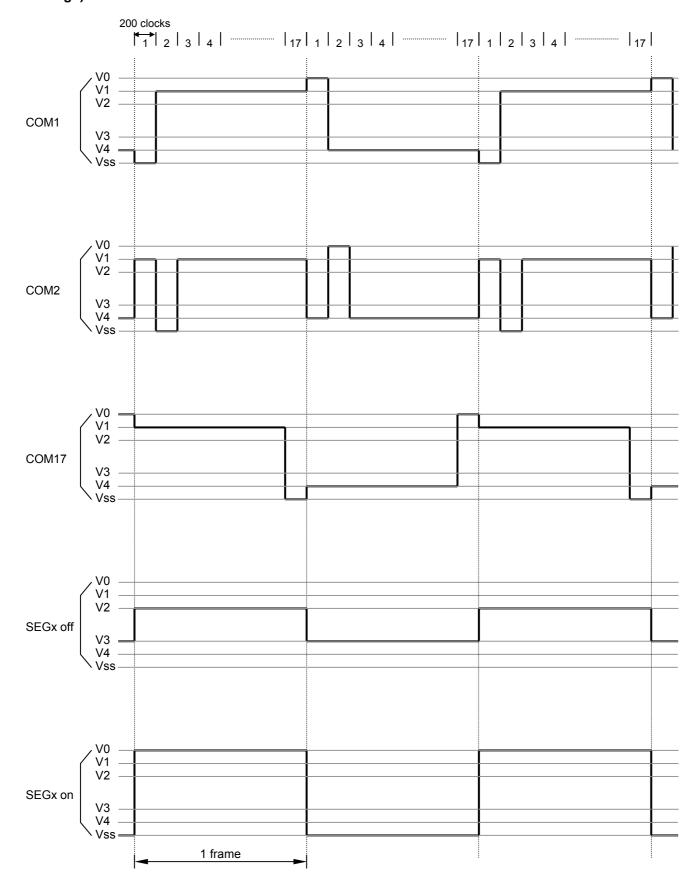
■ DC Characteristics

(TA = 25 , VDD = 2.7 V - 4.5 V)

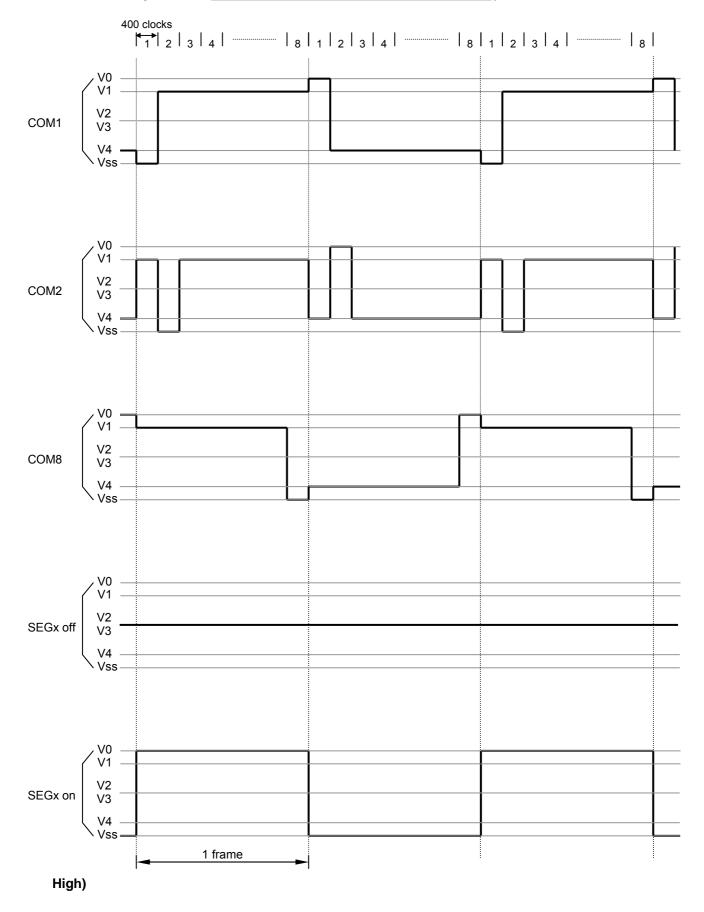
Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	-	2.7	-	4.5	V
V _{LCD}	LCD Voltage	V0-Vss	2.7	-	7.0	V
I _{CC}	Power Supply Current	VDD=3.0V (Use internal booster/follower circuit)	-	160	230	uA
V_{IH1}	Input High Voltage (Except OSC1)	-	1.9	-	VDD	V
V _{IL1}	Input Low Voltage (Except OSC1)	-	- 0.3	-	0.8	٧
V _{IH2}	Input High Voltage (OSC1)	-	0.7 VDD	-	VDD	V
V _{IL2}	Input Low Voltage (OSC1)	-	-	-	0.2 VDD	٧
V _{OH1}	Output High Voltage (DB0 - DB7)	I _{OH} = -1.0mA	0.75 VDD	-	-	٧
V _{OL1}	Output Low Voltage (DB0 - DB7)	I _{OL} = 1.0mA	-	-	0.8	٧
V _{OH2}	Output High Voltage (Except DB0 - DB7)	I _{OH} = -0.04mA	0.8 VDD	-	VDD	٧
V _{OL2}	Output Low Voltage (Except DB0 - DB7)	I _{OL} = 0.04mA	-	-	0.2 VDD	٧
R _{COM}	Common Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	V _{IN} = 0V to VDD	-1	-	1	μА
I _{PUP}	Pull Up MOS Current	VDD = 3V	20	30	40	μА
fosc	Oscillation frequency	VDD = 3V,1/17duty	350	540	1100	KHz

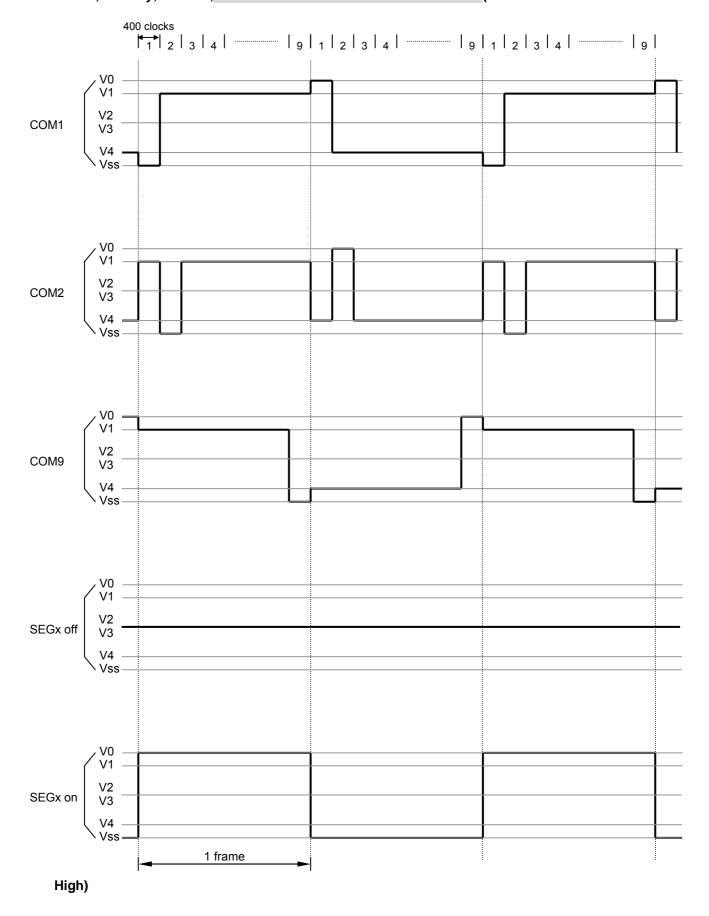

■ DC Characteristics

(TA = 25 , VDD = 4.5 V - 5.5 V)

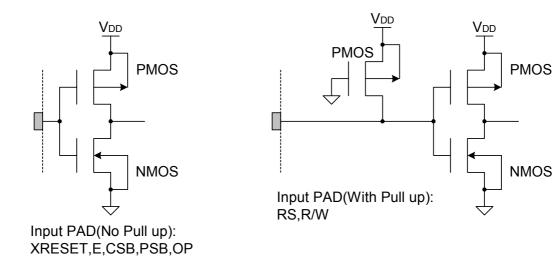

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	-	4.5	-	5.5	V
V _{LCD}	LCD Voltage	V0-Vss	2.7	-	7.0	V
I _{cc}	Power Supply Current	VDD=5.0V (Use internal booster/follower circuit)	-	240	340	uA
V _{IH1}	Input High Voltage (Except OSC1)	-	2.7	-	VDD	V
V _{IL1}	Input Low Voltage (Except OSC1)	-	-0.3	-	0.8	٧
V _{IH2}	Input High Voltage (OSC1)	-	0.7 VDD	-	VDD	V
V _{IL2}	Input Low Voltage (OSC1)	-	-	-	1.0	V
V _{OH1}	Output High Voltage (DB0 - DB7)	I _{OH} = -1.0mA	3.8	-	VDD	V
V _{OL1}	Output Low Voltage (DB0 - DB7)	I _{OL} = 1.0mA	-	-	0.8	V
V _{OH2}	Output High Voltage (Except DB0 - DB7)	I _{OH} = -0.04mA	0.8 VDD	-	VDD	٧
V_{OL2}	Output Low Voltage (Except DB0 - DB7)	I _{OL} = 0.04mA	-	-	0.2 VDD	V
R _{COM}	Common Resistance	$V_{LCD} = 4V, I_d = 0.05mA$	-	2	20	ΚΩ
R _{SEG}	Segment Resistance	$V_{LCD} = 4V, I_{d} = 0.05mA$	-	2	30	ΚΩ
I _{LEAK}	Input Leakage Current	V _{IN} = 0V to VDD	-1	-	1	μΑ
I _{PUP}	Pull Up MOS Current	VDD = 5V	65	95	125	μА
fosc	Oscillation frequency	VDD = 5V,1/17duty	350	540	1100	KHz

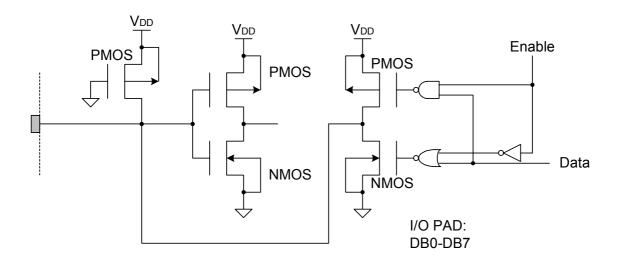
■ LCD Frame Frequency


• 1/16 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/16 duty; 1/5 bias,1 frame =1.85us x 200 x 16 = 5.92ms=168.9Hz(SHLC and SHLS connect to High)


• 1/17 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/17 duty; 1/5 bias, 1 frame =1.85us x 200 x 17 = 6.29ms=159Hz(SHLC and SHLS connect to High)

● 1/8 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/8 duty; 1/4 bias,1 frame = 1.85us x 400 x 8 = 5.92ms=168.9Hz(SHLC and SHLS connect to




• 1/9 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/9 duty; 1/4 bias,1 frame = 1.85us x 400 x 9 = 6.66ms=150Hz(SHLC and SHLS connect to

■ I/O Pad Configuration

Rx,SHLx,CLS,EXT

■ LCD and ST7032 Connection

SHLC/SHLS ITO option pin can select at different direction for LCD panel

Com normal direction/Seg normal direction

ABCDEFGHIJKLMNOP QRSTUVWXYZABCDEF

2Line x 16 Characters, SHLC=1, SHLS=1

Com normal direction/Seg reverse direction

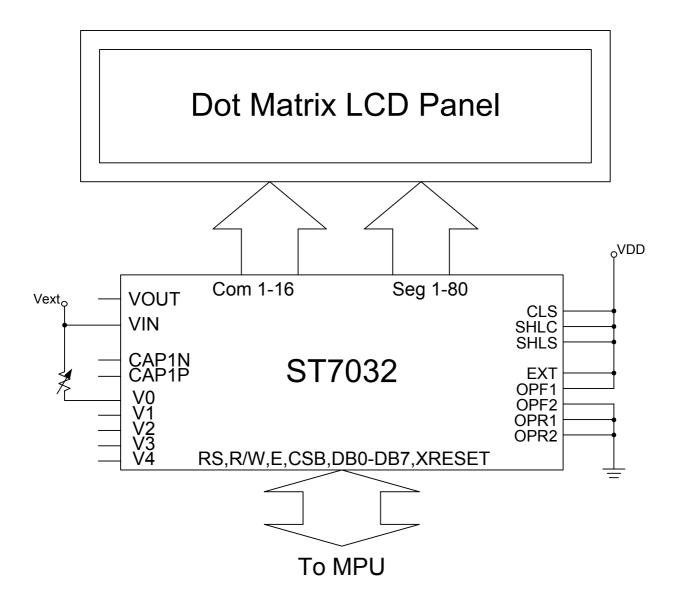
ABCDEFGHIJKLMNOP QRSTUVWXYZABCDEF

2Line x 16 Characters, SHLC=1, SHLS=0

Com reverse direction/Seg normal direction

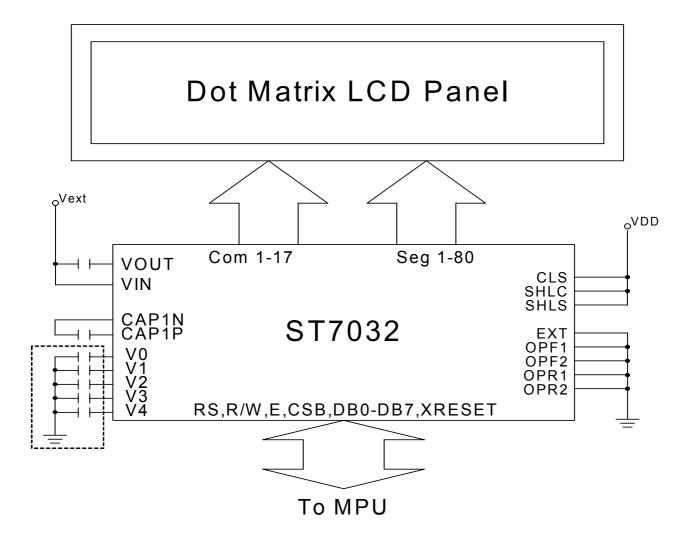
ABCDEFGHIJKLMNOP QRSTUVWXYZABCDEF

2Line x 16Characters, SHLC=0, SHLS=1


Com reverse direction/Seg reverse direction

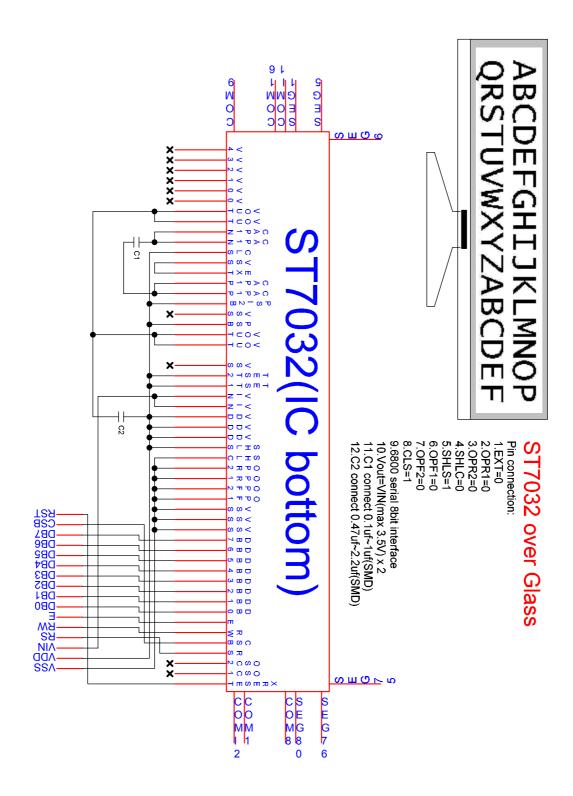
ORSTUVWXYZABCDEF QRSTUVWXYZABCDEF

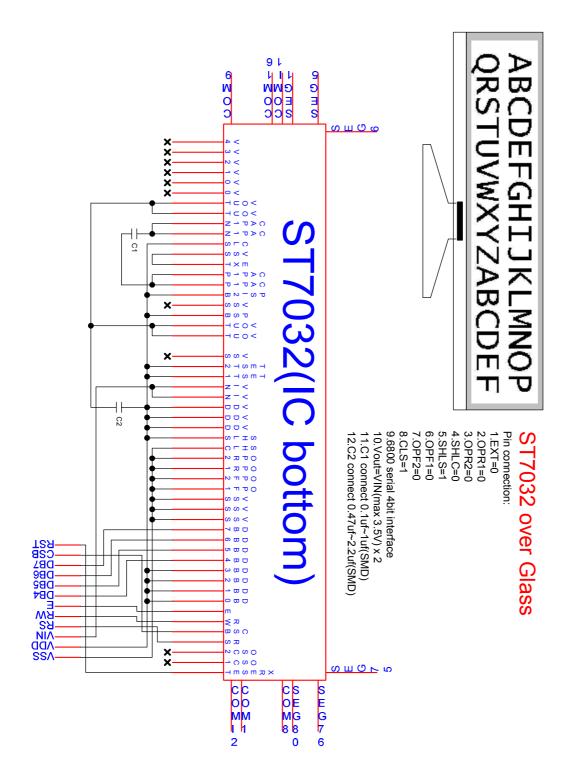
2Line x 16Characters, SHLC=0, SHLS=0


■ Application Circuit(ST7066U normal mode)

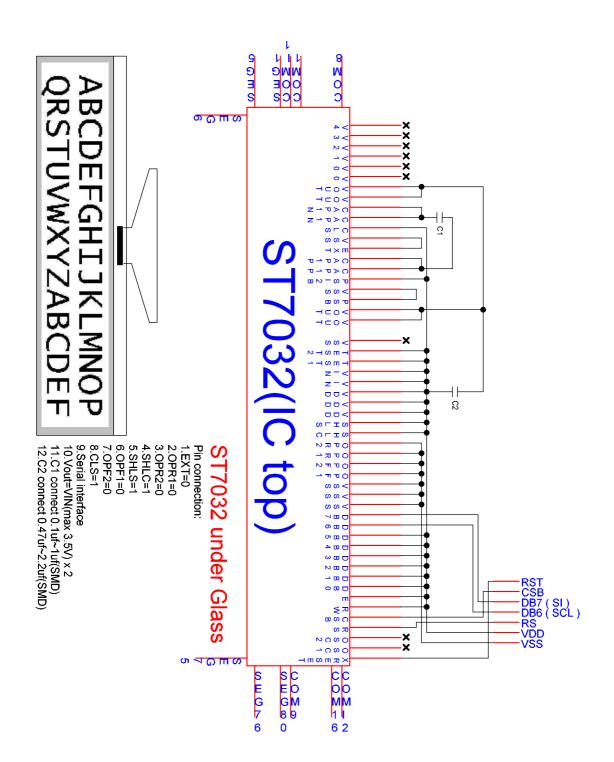
- > Use internal resistor(9.6K ohm) and contrast adjust with external VR.
- > Booster always off.
- > Has 240 character of CGROM and 8 characters of CGRAM
- Internal oscillator.

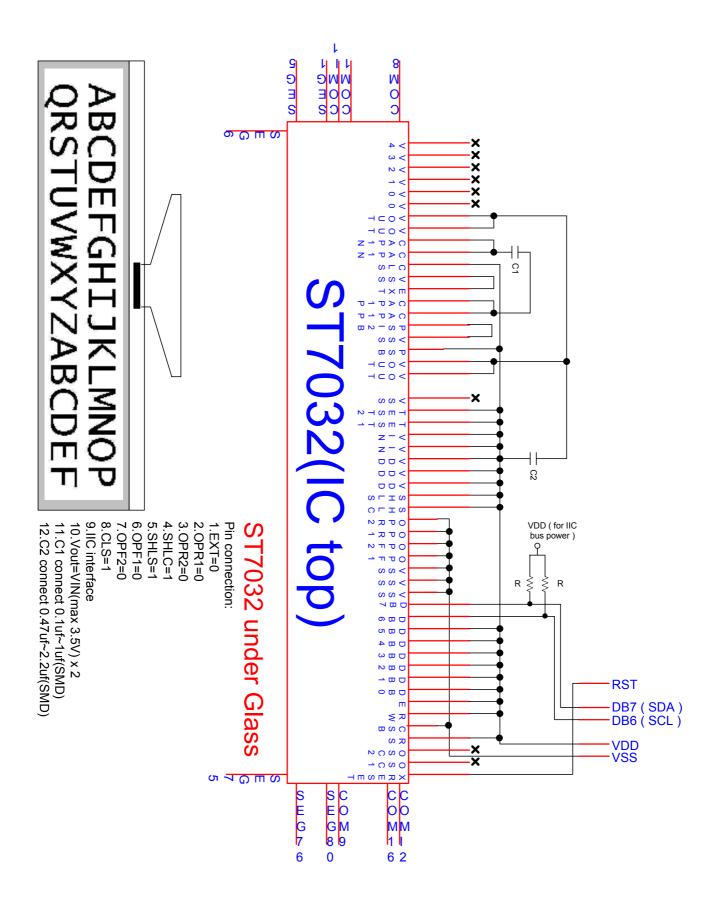
■ Application Circuit(Extension mode)


- > Use internal follower circuit.
- > Booster has 2 times pump.
- > Has 240 character of CGROM and 8 characters of CGRAM
- Internal oscillator


When the heavy load is applied, the dotted line part could be added.

■ Application Circuit(for glass layout)


ST7032 over Glass,6800 serial 8bit interface, with booster and follower circuit on


ST7032 over Glass,6800 serial 4bit interface, with booster and follower circuit on

ST7032 under Glass, serial interface, with booster and follower circuit on

ST7032i under Glass, IIC interface, with booster and follower circuit on

